Robust Exponential Memory in Hopfield Networks

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Exponential Memory in Hopfield Networks

The Hopfield recurrent neural network is a classical auto-associative model of memory, in which collections of symmetrically coupled McCulloch-Pitts binary neurons interact to perform emergent computation. Although previous researchers have explored the potential of this network to solve combinatorial optimization problems or store reoccurring activity patterns as attractors of its deterministi...

متن کامل

Supplemental Information : “ Robust exponential memory in Hopfield networks ”

For an integer r ≥ 0, we say that state x∗ is r-stable if it is an attractor for all states with Hamming distance at most r from x∗. Thus, if a state x∗ is r-stably stored, the network is guaranteed to converge to x∗ when exposed to any corrupted version not more than r bit flips away. For positive integers k and r, is there a Hopfield network on n = ( 2k 2 ) nodes storing all k-cliques r-stabl...

متن کامل

Supplemental Information : “ Robust exponential memory in 1 Hopfield networks ”

6 In this supplementary material, we elaborate on the mathematics involved in the 7 claims of the main paper.

متن کامل

Robust exponential binary pattern storage in Little-Hopfield networks

The Little-Hopfield network is an auto-associative computational model of neural memory storage and retrieval. This model is known to robustly store collections of randomly generated binary patterns as stable-points of the network dynamics. However, the number of binary memories so storable scales linearly in the number of neurons, and it has been a longstanding open problem whether robust expo...

متن کامل

Robust exponential Little-Hopfield network storage

The Little-Hopfield network is an auto-associative computational model of neural memory storage and retrieval. This model is known to robustly store collections of randomly generated binary patterns as stable-states of the network dynamics. However, the number of binary memories so storable scales linearly in the number of neurons, and it has been a long-standing open problem whether robust exp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Journal of Mathematical Neuroscience

سال: 2018

ISSN: 2190-8567

DOI: 10.1186/s13408-017-0056-2